

Date: Monday, March 23, 2020 Statistics: 267 words Plagiarized / 2174 Total words Remarks: Low Plagiarism Detected - Your Document needs Optional Improvement.

ABILITY FREE RADICAL BINDING OF DENGEN'S STEM BARK EXTRACT (Dillenia serrata) FROM LUWU DISTRICT INDONESIA Santi Sinala, Ismail Ibrahim, Alfrida Monica Salasa Jurusan Farmasi Poltekkes Kemenkes Makassar *) santisinala@poltekkes-mks.ac.id ABSTRACT Degenerative diseases such as cancer, heart disease is one of the diseases caused by free radicals.

Dengen (Dillenia serrata) is one of Indonesia's endemic local plants that has the potential to bind free radicals. So far, only limited to the use of fruit and consumed directly. This study aims to determine the ability of dengen stem bark extract to bind to free radicals expressed in IC50.

In the initial research, the total content of polyphenols in dengen stem bark extract was 444.8 mg GAE / g or 44.48%. Dengen stem bark is extracted by maceration using 70% ethanol solvent. Antioxidant activity was calculated based on IC50 (Inhibition Concentration) values ??using the DPPH method, and measured at a wavelength of 516 nm.

Ethanol extract of dengen bark is made in 5 concentration series, namely 10 ppm, 20 ppm, 30 ppm, 40 ppm and 50 ppm. Ethanol extract of dengen bark has a very active antioxidant activity with an IC50 value of 48.33 ppm. Whereas for comparison vitamin C has an IC50 value of 15.448 ppm. From the results, it can be concluded that the ethanol extract of dengen bark has the ability to bind free radicals with IC50 48.33 ppm Keywords: Dengen, Ethanol Bark Extract, Free Radicals, IC50 INTRODUCTION Non-communicable diseases or degenerative diseases are diseases that cause damage to body organs.

Some degenerative diseases that are mostly suffered are diabetes mellitus, hypertension, cancer, coronary heart disease (CHD), cardiovascular disease and lung disease. Based on WHO data in 2008 there were 57 million deaths in the world, mostly caused by non-communicable diseases. Degenerative diseases not only kill old people, they can also kill young people (Window Bulletin, Ministry of Health, Republic of Indonesia, 2012).

One of the causes of degenerative diseases is free radicals. Free radicals are active electrons in the body that do not have a partner so that they can bind normal cells in the body and develop an abnormal cell called a tumor and / or cancer (Winarsi H, 2007). The binding of free radicals with normal cells in the body can be prevented by the presence of antioxidant ingredients.

This antioxidant material can reduce free radicals so as to prevent binding with normal cells. Apart from chemicals, these antioxidant ingredients can also be obtained from natural ingredients. The government program for Back to Nature can be encouraged to find Indonesian endemic plants that contain secondary metabolites as a preventative and curative basis for disease (Apriandi, A., 2011).

Dengen (Dillenia serrata) is one of Indonesia's endemic plants that can only be found on the island of Sulawesi and its surroundings, especially in the area of ??Luwu Regency. Utilization of this plant is still limited to the fruit, which has been made in addition to juice and sour taste in cooking, has also been developed into dodol (Nur Ilma, 2012). Other parts of dengen plants that potentially contain secondary metabolites of polyphenols are the bark.

Utilization of bark in the community, usually cooked with water, and drunk for patients with vomiting blood (Jalil, J., 2015). This is supported by the large content of polyphenols in dengen stem bark ethanol extract that is equal to 444.8 mg GAE / g or 44.48% (Sinala, S, 2019). Seeing the use and content of dengen stem bark above, the researchers will examine the ability of dengue skin ethanol extract in counteracting free radicals.

The formulation of the problem in this research is how much is the ability of dengue stem ethanol extract in counteracting free radicals? MATERIALS AND METHODS The study was conducted in July - December 2019 at the Laboratory of Chemistry, Department of Pharmacy, Poltekes Ministry of Health, Makassar. The tools used are maceration vessels, analytical scales, rotary evaporators, glassware, UV-Vis spectrophotometers. While the ingredients used are dengen bark, 70% ethanol, 96% ethanol, DPPH, Vitamin C. Selected good stem bark, then washed with running water. The part is made dry simplicia. Dillenia serrata stem bark that has been pollinated is weighed and put into a maceration container, then added 70% ethanol until completely submerged.

The extraction process is carried out for 5-6 days accompanied by stirring so that the extraction process is perfect. Filtering is done, if the solvent has been colored then the solvent is always replaced. The filtering results are evaporated to obtain a thick extract. Extraction was carried out 3 times.

Determination of Antioxidant Activity Making DPPH 40 ppm Solution A 40 ppm DPPH solution is made by weighing as much as 40 mg DPPH dissolved in 96% ethanol to 1000 mL. Making a Standard Curve As much as 4.0 mL of a 40 ppm DPPH solution was added with 1.0 mL of 96% ethanol to the vial, then the absorbance was measured in the wavelength range of 400 nm-800 nm. Obtained maximum wavelength at 516 nm.

Manufacture and measurement of Vitamin C solutions Weighed 500 ppm standard vitamin C as much as 50 mg and was dissolved with 96% ethanol to 100 mL. A dilution series of Vitamin C solution was made from stock solutions which were 5 ppm, 10 ppm, 15 ppm and 20 ppm. Each concentration series was carefully piped as much as 1.0 mL and each of them was added 4.0 mL of a 40 ppm DPPH solution to the vial.

The solution was incubated for 30 minutes, then the absorbance was measured at a wavelength of 516 nm. Preparation of test solutions Each extract extracted from the extracted replication was weighed carefully as much as 200 mg of the extract was put into a 20 ml volumetric flask diluted with 96% ethanol and sufficient to the mark (10,000 ppm).

Then piped stock solutions as much as 1 ml, 2 ml, 3 ml, 4 ml, and 5 ml, put into a 10 ml volumetric flask and sufficient volume with 96% ethanol to the mark, so that the solution is obtained with a concentration of 10 ppm, 20 ppm, 30 ppm, 40 ppm and 50 ppm. Each concentration series was carefully piped as much as 1.0 mL and each of them was added 4.0 mL of a 40 ppm DPPH solution to the vial.

The solution was incubated for 30 minutes, then the absorbance was measured at a wavelength of 516 nm. Data analysis IC50 value is obtained by linear regression equation which states the relationship between extract concentration with the x-axis and the percent radical capture as the y-axis. % sample binding / inhibition of free radicals (DPPH solution).

Antioxidant activity is expressed by 50% inhibition concetration or IC50, which is a sample concentration that can reduce DPPH radicals by as much as 50%. IC50 values obtained from the value of x after replacing y = 50. From the equation y = a + bx IC50 values can be calculated using the formula: IC50= 50-?? B RESULT From this study the following data were obtained: Table 1.

IC50 values of Vitamin C Concentration (ppm) _Absorban _% Inhibitor _IC50 _ _DPPH _0.82082 _ _15.488 ppm _ 5 _0.71528 _12.85787 _ _10 _0.55297 _32.632 _ _15 _0.44655 _45.59709 _ _20 _0.27095 _66.99033 _ _Source: Primary Data 2019 Table 2. IC50 values of Dengen Stem Bark Ethanol Extract Extraction Replication _Concentration (ppm) _ Absorban _% Inhibitor _IC50 (ppm) _Average IC50 (ppm) _ 1 _10 _0.76460 _6.849248 _48.53 _ 48.33 _ _20 _0.67078 _18.27928 _ __ _30 _0.57209 _30.30262 _ __ _40 _0.48560 _40.83965 _ __ _50 _0.40231 _50.98682 _ _ _II _10 _0.76421 _6.896762 _48.20 _ _ _20 _0.66624 _18.83239 _ __ _30 _0.56981 _30.5804 _ __ _40 _0.48576 _40.82016 _ __ _50 _0.39767 _51.55211 _ _ _III _10 _0.75781 _7.67647 _48.27 _ _ 20 _0.65778 _19.86306 _ _ _ _30 _0.54856 _33.16927 _ _ _40 _0.47065 _42.661 _ __ _50 _0.41500 _49.4408 _ _ _ Source: Primary Data 2019 / Picture 1. Dengen's Stem Bark / Picture 2. DPPH Solution / Picture 3.

Dengen's Stem Bark Extract to DPPH Solution DISCUSSION In this study, the determination of the ability to bind free radicals from Dengen stem bark ethanol extract (Dillenia serrata) originating from the Malangke area of ??Luwu Regency Indonesia by using a UV-Vis spectrophotometer. This plant is an endemic plant, which only grows in the Sulawesi islands. This plant contains many secondary metabolites.

Based on the use of the bark by the community as a medicine to vomit blood, while the fruit is usually eaten directly. But because of its sour taste, people use it as an acidic ingredient in food, for example in fish cooking. Based on this utilization, the ability to bind free radicals from the bark is examined. (Windadri, 2006).

The use of dengen plants as a medicine to vomit blood was allegedly due to the content of polyphenol compounds. Polyphenol compounds are useful for human health because they have antioxidant properties, free antiradical, anticarogenogenic, and antimicrobial properties so that they can inhibit food pathogens, antiproliferation and antimutagenic, can inhibit the oxidation of low density cholesterol compounds (LDL) on endhothelial cells, can increase high-density cholesterol (antiproliferation and antimutagenic), can inhibit the oxidation of low density cholesterol compounds (LDL) HDL), and can reduce triglyceride content. These polyphenol compounds will be responsible for the antioxidant activity of these parts.

The higher levels of polyphenol compounds contained, the higher the antioxidant activity of these parts. In a previous study by Santi Sinala (2019), the total polyphenol content of dengen bark extract ethanol extract was 444.8 mg GAE / g or 44.48%. Determination of the ability to bind to free radicals is expressed as an antioxidant activity.

Potential antioxidant activity in vitro is carried out using DPPH reagents. The ability to bind to free radicals is illustrated by the reduction in color intensity of DPPH. DPPH has a purple color. The less intensity of the purple color, the higher the ability to bind free radicals.

This measurement is carried out at a maximum wavelength of 516 nm (Molyneux, 2004). DPPH is a stable free radical. The principle of this antioxidant activity is the occurrence of a hydrogen or electron donation process that reduces DPPH to diphenyl picrilhydrazine which is no longer radical. This change is seen in the intensity of the DPPH color changing from purple to yellow (pikril group).

The change in DPPH color intensity is proportional to the number of electron donations followed by a decrease in DPPH absorbance in the wavelength range of 515 nm - 520 nm. Absorption reads on the spectrophotometer at Wavelength 516 illustrate the remaining DPPH molecules contained in the solution. The parameter that states antioxidant activity by free radical scavenging method from DPPH is IC50.

IC50 is a concentration of a test compound that can reduce free radicals by as much as 50%. The smaller the IC50 value, the higher the free radical scavenging activity. IC50 values ??obtained from a linear regression equation that states the relationship between the concentration of the test compound with percent antioxidant activity. From the research results obtained by IC50 from dengen stem bark extract has an IC50 value of 48.33 ppm. While vitamin C has an IC50 of 15,488 ppm.

From these results it shows that the color of the skin of the stem has the highest antioxidant activity, which with a concentration of 48.33 ppm has been able to ward off free radicals at half its concentration. CONCLUSION Dengen stem bark extract (Dillenia serrata) has the ability to bind to free radicals with an IC50 value of 48.33 ppm while vitamin C has an IC50 of 15,488 ppm. REFERENCE Hasniarti. (2012). Studi Pembuatan Permen Buah Dengen. Skripsi.

Makassar: Program Studi Ilmu Dan Teknologi Pangan, Jurusan Teknologi Pertanian Fakultas Pertanian. Universitas Hasanuddin Makassar. Ilma, N. (2012). Studi Pembuatan Dodol Buah Dengen (Dillenia Serrata Thunb). Skripsi. Makassar: Teknologi Pangan, Fakultas Pertanian. Universitas Hasanuddin. Jalil, J., et all. 2015. Article : Inhibitory Effect of Triterpenoids from Dillenia serrate (Dilleniaceae) on Prostaglandin E2 Production and Quantitative HPLC Analysis of Its Koetjapic Acid and Betulinic Acid Content, Journal Molecules, Kementerian Kesehatan RI, 2012, Buletin Jendela Data dan Informasi Kesehatan – Penyakit Tidak Menular, Jakarta Molyneux, P. (2004). "The Use of The Stable Free Radical Diphenylpicryl-hydrazil (DPPH) for Estimating Antioxidant Songklanakarin J. Science Technology.

26, (2), 212. Sinala, S., Ibrahim I, Salasa, AM, 2019, "Profile Total Polyphenol <mark>Of The</mark> Ethanol Extract From Dengen (Dillenia <mark>Serrata) Leaf And Stem Bark Which Comes From</mark> Malangke City Luwu District</mark> " Proceeding International Conference, ICUH, Makassar

INTERNET SOURCES:

- <1% http://spmi.poltekkes-mks.ac.id/farmasi-1/
- <1% https://www.slideshare.net/duttamonasen/13-free-radicals-and-antioxidants
- <1% https://www.phcogj.com/articles/export/bibtex
- <1% http://journal.uin-alauddin.ac.id/index.php/al-kimia/article/view/7800
- <1% https://www.ncbi.nlm.nih.gov/books/NBK279095/
- <1% https://ourworldindata.org/causes-of-death
- <1% https://iopscience.iop.org/issue/1755-1315/343/1
- <1% https://iopscience.iop.org/article/10.1088/1742-6596/1317/1/012087/pdf
- <1% http://www.freepatentsonline.com/8697171.html
- 1% https://jels.ub.ac.id/index.php/jels/article/view/330

<1% -

https://genesenvironment.biomedcentral.com/articles/10.1186/s41021-018-0109-0 <1% -

https://www.wyzant.com/resources/answers/179175/chemistry_please_help_calculate_th e_concentration_of_a_crystal_violet_solution_prepared_by_diluting_4_0_ml_of_1_0_x_10_4 _m_crystal_viole

<1% - https://www.frontiersin.org/articles/10.3389/fphar.2020.00289/full 1% -

https://pdfs.semanticscholar.org/6830/223be1306892ea8c3b606c67bb7740d303da.pdf <1% - https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30000UX8.TXT <1% - http://www.chemcollective.org/chem/ubc/exp03/tutor3.php

1% -

https://www.researchgate.net/publication/316507339_The_antioxidant_activity_and_phyt ochemical_screening_of_ethanol_extract_fractions_of_water_ethyl_acetate_and_n-hexane _from_mistletoe_tea_Scurrula_atropurpurea_BL_dans

<1% -

https://www.researchgate.net/post/Can_you_answer_my_question_about_a_DPPH_assay <1% -

https://www.scholarsresearchlibrary.com/articles/development-and-validation-of-uv-spe ctrophotometric-method-for-simultaneous-estimation-of-acyclovir-and-silymarin-in-nio .pdf

<1% - https://www.sciencedirect.com/science/article/pii/S0254058410008631 <1% -

http://dosen.univpancasila.ac.id/dosenfile/2082221004142067802408January2015.pdf <1% -

https://www.researchgate.net/publication/242711451_Polyphenol_content_and_antiradic al_activity_in_different_apple_varieties

<1% - https://www.sciencedirect.com/science/article/pii/S0963996912004917

<1% - https://www.sigmaaldrich.com/catalog/papers/23108790

<1% - https://iopscience.iop.org/article/10.1088/1757-899X/349/1/012006/pdf

1% - http://ifrj.upm.edu.my/24%20(02)%202017/(4).pdf

<1% - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462830/

<1% - http://onlinelibrary.wiley.com/doi/10.1111/1541-4337.12298/full

<1% - https://agrojournal.org/17/01-02-11.pdf

<1% - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930497/

<1% -

https://www.sciencedirect.com/topics/medicine-and-dentistry/dpph-radical-scavenging-assay

<1% -

https://www.amazon.com/Better-Focus-Nootropics-Supplement-NeuroFactor/dp/B07D3 MH7V9

1% -

http://repository.unhas.ac.id/bitstream/handle/123456789/2822/SAINUDDIN%20%28G6 11%2007%20042%29.docx?sequence=1

3% - http://journal.poltekkes-mks.ac.id/ojs2/index.php/Prosiding/article/view/1181

1% - https://jurnal.uns.ac.id/apc/article/view/25022